14 research outputs found

    Communication-Avoiding Optimization Methods for Distributed Massive-Scale Sparse Inverse Covariance Estimation

    Full text link
    Across a variety of scientific disciplines, sparse inverse covariance estimation is a popular tool for capturing the underlying dependency relationships in multivariate data. Unfortunately, most estimators are not scalable enough to handle the sizes of modern high-dimensional data sets (often on the order of terabytes), and assume Gaussian samples. To address these deficiencies, we introduce HP-CONCORD, a highly scalable optimization method for estimating a sparse inverse covariance matrix based on a regularized pseudolikelihood framework, without assuming Gaussianity. Our parallel proximal gradient method uses a novel communication-avoiding linear algebra algorithm and runs across a multi-node cluster with up to 1k nodes (24k cores), achieving parallel scalability on problems with up to ~819 billion parameters (1.28 million dimensions); even on a single node, HP-CONCORD demonstrates scalability, outperforming a state-of-the-art method. We also use HP-CONCORD to estimate the underlying dependency structure of the brain from fMRI data, and use the result to identify functional regions automatically. The results show good agreement with a clustering from the neuroscience literature.Comment: Main paper: 15 pages, appendix: 24 page

    Compiler Support for Sparse Tensor Computations in MLIR

    Full text link
    Sparse tensors arise in problems in science, engineering, machine learning, and data analytics. Programs that operate on such tensors can exploit sparsity to reduce storage requirements and computational time. Developing and maintaining sparse software by hand, however, is a complex and error-prone task. Therefore, we propose treating sparsity as a property of tensors, not a tedious implementation task, and letting a sparse compiler generate sparse code automatically from a sparsity-agnostic definition of the computation. This paper discusses integrating this idea into MLIR

    Write-Avoiding Algorithms

    Get PDF
    Short version of the technical report available at http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-163.pdf as Technical Report No. UCB/EECS-2015-163International audienc
    corecore